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MAIN TEXT 

 

It is an oft-cited fact that towards the middle of this century the rate of increase in 

global population is likely to outstrip that in global agricultural production. Moreover, 

productivity varies greatly across the globe, yet the majority of the burden on 

agriculture is placed on the cultivation of a small number of species largely in 

locations different from their origin of domestication and often subject to far different 

environmental conditions (Fernie and Yan, 2019). Recent technical developments—

mainly the enhanced accessibility and affordability of next-generation sequencing 

technologies—have allowed the identification of over 100 domestication genes 
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(Fernie and Yan, 2019). Many of these, such as those associated with the loss of 

shattering, seed size and dormancy, are conserved across our crop species (Gross 

and Olsen, 2010; Lenser and Theissen, 2013). However, others seem to be specific 

to certain crops or crop types such as the modification of fruit shape (Xiao et al., 

2008), or the evolution of tubers (Cheng et al., 2016; Hardigan et al., 2017). Having 

identified the genes, they can be used for de novo domestication, i.e., the genetic 

improvement of little cultivated or as yet undomesticated species. Key to this is the 

identification of species that display specific desired properties, for example, higher 

production and fertilizer use efficiency, more balanced nutritional properties, better 

flavor or, alternatively, that are better suited for growth under certain agronomic 

conditions. To date, a handful of examples of de novo domestication have been 

published, which act as a proof-of-concept of the approach (Lemmon et al., 2018; Li 

et al., 2018; Zsogon et al., 2018; Hoyos et al., 2020; Yu et al., 2021). Moreover, 

several projects such as The African Orphan Crops Consortium (Jamnadass et al., 

2020), have been initiated, which aim to use this approach at a very large scale. 

 

This Update focuses on recent progress made in both de novo domestication per se 

and in the use of precision phenotyping to assess suitable candidates for the 

process. Largely, but not exclusively, using teosinte-maize (Zea mays) as a case-

study we (i) detail how computational methods can be used for identifying 

domestication genes and evaluating changes associated with these genes at both 

the phenotypic and molecular levels (Broman et al., 2019), (ii) demonstrate the 

power of precision phenotyping in evaluating the potential phenotypic scope of such 

interventions (Yang et al., 2020), (iii) describe the combined power of bioinformatics 

approaches and CRISPR/Cas libraries for streamlining agricultural engineering 

strategies (Childs et al., 2012; Liu et al., 2020), (iv) explain the benefit of harnessing 

recently acquired information concerning natural structural variations in crop and 

close-relative genomes (Alonge et al., 2020; Domínguez et al., 2020), (v) outline the 

potential role single cell sequencing will play in applying these methods to polyploid 

species (Luo et al., 2020) and finally (vi) discuss the prospects of recent approaches 

integrating molecular markers into metabolic models to improve genome selection 

(Tong et al., 2020). We discuss in detail the concepts underlying these approaches 

rather than the technical detail of either next generation sequencing, genome editing, 

or plant phenotyping studies, which have been the subjects of recent reviews in their 
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own right (Schneeberger and Weigel, 2011; Pacher and Puchta, 2017; Yang et al., 

2020) 

 

DE NOVO DOMESTICATION—THE STATE OF THE ART 

The combination of global climate change, our expanding population and the 

increasing growth of plants for biofuel and other non-food purposes is leading to an 

ever increasing demand for agronomic efficiency. Indeed, productivity varies greatly 

across the globe and while the production efficiency of cereals has kept pace with 

the human population, this is not true for all crops and some are even poorly suited 

to their area of cultivation. For example, the yields of cassava (Manihot esculenta) 

are three times higher in South East Asia than in Africa (Sonnewald et al., 2020). 

This instability aside, we only cultivate around 150 species to a large extent and 70% 

of the calories consumed by humans comes from only 15 of these species (Fernie 

and Yan, 2019). That said, more than 7,000 of the 400,000 extant plant species are 

regarded as semi-cultivated (Smýkal et al., 2018) and could represent important 

germplasm for the design of future crops. Here, we describe already published 

examples of plant de novo domestication before briefly outlining what makes a good 

candidate species for this approach. Following this introduction, we detail the integral 

role we envisage computational and precision phenotyping will play in future 

strategies of de novo domestication and re-domestication. 

 

Four recent studies in the Solanaceae demonstrate the potential of gene editing for 

de novo domestication. Two of the studies included the orphan crop groundcherry 

(Physalis pruinosa) (Lemmon et al., 2018; Kwon et al., 2020), whilst three included 

de novo domestication of the wild tomato Solanum pimpinellifolium or alteration of 

the MicroTom cutivar (Li et al., 2018; Zsögön et al., 2018; Kwon et al., 2020). The 

studies on groundcherry included development of a transformation procedure 

alongside the development of genomic resources for the species. Following the 

acquisition of this competence, the authors first knocked out SELF-PRUNING (SP) 

and SELF-PRUNING-5G (SP-5G) with the latter resulting in enhanced auxiliary 

flowering and increased fruit density, as well as targeting the CLAVATA (CV) 

pathway, which increased floral meristem size and led to additional floral organs 

(Lemmon et al., 2018). Analogous studies in S. pimpinellifolium targeted these three, 

and a further eight, genes (Li et al., 2018; Zsögön et al., 2018). They also proved 
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successful in altering target traits, for example, doubling the yield of S. 

pimpinellifolium and enhancing lycopene levels five-fold. In the fourth study, both the 

MicroTom cultivar of S. lycopersicum and groundcherry were modified either by 

stacking a gene for tomato stem length with SP5G or SP or targeting the same stem 

length regulator alone. Both approaches led to a compact stature and early yielding 

plants suitable for urban agriculture (Kwon et al., 2020). Although we note that the 

work on MicroTom is clearly not an example of de novo domestication per se that on 

groundcherry is. Actually, the term de novo domestication is not universally 

accepted, given that domestication over millennia is acting on the whole genome in 

concert (Stetter et al., 20017; Stetter, 2021). Whilst understanding these concerns, it 

is a term that has been rapidly adopted and a clear consensus concerning its 

meaning has been reached. In essence, de novo domestication refers to a deliberate 

modification of the sequence of a domestication gene in a lesser grown species with 

the aim of producing an agriculturally useful plant. 

 

Although many of the early examples of de novo domestication have been carried 

out in the Solanaceae, the approach is by no means limited to this family, with 

examples in pennycress (Thlaspi arvense L.) (McGinn et al., 2019), sunflower 

(Helianthus annuus) (Ekar et al., 2019; Van Tassel et al., 2020) and the legume 

Vigna stipulacea (Takahashi et al., 2019). Pennycress has been de novo 

domesticated as a seed cover crop for the winter fallow period. For this purpose, 

CRISPR was used to produce insertion/deletion (indel) mutations in the FATTY 

ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and 

creating an edible seed oil comparable to that of canola (McGinn et al., 2019). By 

contrast, conventional breeding has been used to domesticate the oilseed Silphium, 

resulting in increased aboveground biomass at the seedling and adult stages and a 

greater increase in seed yield, combining to a modest improvement in harvest index 

(Van Tassel et al., 2020). A similar approach has been utilized to follow sunflower 

domestication in order to develop a perenial crop that can produce both high value 

vegetable oil and continuous ground cover (Ekar et al., 2019). Using an alternate 

approach, Takahashi et al. carried out EMS mutagenesis and screening of a Vigna 

stipulacea population, isolating mutants with reduced seed dormancy and shattering, 

respectively (Takahashi et al., 2019). Vigna represents an interesting legume 

species for de novo domestication given that it exhibits rapid growth, a short 
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vegetative stage, and broad resistance to pests and diseases. Although it will be 

quite time consuming, the authors postulate that by pyramiding these mutant 

phenotypes, they will be able to generate a primitive crop which can be cultivated 

without pesticide. In addition to these specific examples, considerable research effort 

is also ongoing in close relatives of sorghum (Sorghum bicolor) and sugarcane 

(Saccharum officinarum)(Paterson et al., 1995; Paterson et al., 1995; Zhang et al., 

2018) and the cases for utilizing many other crop wild relatives not least for their 

enhanced stress tolerance have been convincingly made (Zhang et al., 2018; Fernie 

and Yan, 2019).  

 

A recent  tour-de-force of the de novo domestication of the allotetraploid wild rice O. 

alta was published in Cell (Yu et al., 2021). In this article, a breeding route was 

presented in order to harness the advantages polyploidization in terms of genome 

buffering, vigorousness and environmental robustness to rice. To do so, the authors 

developed an efficient transformation system, thus facilitating gene editing and a 

high quality genome assembly of O. alta. In this example, O. alta was chosen after 

evaluating three wild species (eight O. alta, two O. grandiglumis, and 18 O. latifolia 

lines) and selecting O. alta due to its callus induction and regeneration properties. 

Following this, as a case study, six agronomically important traits, namely shattering, 

awn length, hull color, pericarp color, panicle shape and grain width, were rapidly 

improved in O. alta, thereby demonstrating the feasibility of its de novo 

domestication. This study is arguably the first true de novo domestication and 

illustrates the importance of developing transformation systems and genome 

sequences as enabling steps for this process. 

 

ACCELERATING THE IDENTIFICATION OF DOMESTICATION GENES 

As stated above, rapid de novo domestication requires both genomic information and 

effective transformation procedures. Similarly, the alternative genetics based 

approaches of crossing near relatives in attempt to introgress a trait of interest or the 

adoption of mutagenesis-based strategies have been greatly facilitated by the 

generation of computational tools that render them considerably easier (Huang and 

George, 2011; Youens-Clark et al., 2011; Meng et al., 2015; Broman et al., 2019; 

Wei et al., 2021). However, given that all of these have become relatively standard 
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laboratory techniques, we discuss only the utility of genome data in the identification 

of domestication genes here. 

 

The use of multiomics in de novo domestication is summarized in Figure 1, which we 

first describe here before dissecting the various layers involved in detail in the 

following paragraphs. Wild relatives and modern cultivars as exemplified by teosinte 

and maize (a comparison we routinely use, since, as mentioned above, it arguably 

represents the best characterized material covering plant domestication and 

improvement; Figure 1A) are highly important for tracking signals of selection and 

thereby defining the genomic regions underlying the phenotypic changes during the 

process. Comparisons of the progeny of a biparental cross between the wild and 

cultivated species are commonly made, subjected to metabolomics and 

transcriptomics and the underlying quantitative trait loci including domestication 

genes are cloned (Figure 1B). Literature information concerning the roles of these 

genes in other species can then be mined, since where they were able to provide 

clear answers previous studies have revealed that such genes are either subject to 

parallel domestication or species-specific domestication events (Figure 1C). 

Following such assessments traits of interest, such as biomass, yield and quality, 

can be modified via gene editing of the underlying genes allowing de novo 

domestication and personalization of the de novo domesticate (Figure 1D). 

 

In practice, the tracking of signals of selection is carried out by computational 

analyses known as selective sweeps, which are essentially a measure of the genetic 

diversity between cultivated and ancestral genotypes. Following this approach, it is 

assumed that those regions that have been selected for during domestication 

harboring less diversity than those that regions that are subject to less stringent 

selection (Zhu et al., 2018). When a genetic variant increases its frequency due to 

positive selection, the adjacent alleles also increase in their frequency in a process 

termed hitchhiking (Smith and Haigh, 2007). When the genetic variant under 

selection reaches high frequency (or even fixation), the hitchhiking effect reduces (or 

even eliminates), the genetic variation around the selected locus in an effect known 

as a selective sweep (Pavlidis and Alachiotis, 2017). Local FST outlier tests can be 

used to detect selective sweeps between populations of wild and domesticated taxa 

(Gepts, 2014). There are many different methods based on the FST statistic, which 
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largely vary in the underlying model used to calculate the null distribution of FST 

values (see for example Bonhomme et al., 2010; Lotterhos and Whitlock, 2015). 

Selecting a suitable method is complicated, with considerations including the 

sampling scheme taken, the total size of the dataset, intensity of selective pressure 

and the genetic structure of the population all needing to be taken into account 

(Barrera-Redondo et al., 2020). Illustrative examples of the use of these tests in 

plants include the detection of domestication genes involved in apple (Malus 

domestica) fruit development, size, acidity and sugar content (Khan et al., 2014), 

size, color and disease resistance in tomato (Zhu et al., 2018), and those for oil 

biosynthesis in sunflower (Baute et al., 2015).  

 

Given the torrent of genome sequence information, it seems likely that optimization 

of computational approaches will greatly accelerate identification of domestication 

genes. Indeed, if pedigree is established from genome information and this allows 

clear discrimination of crop wild relatives, landraces and cultivars, similar 

experiments can be carried out to define domestication and improvement genes for 

many species. It is worth noting that a mere 15 years ago the number of confirmed 

domestication genes numbered just over two dozen (Doebley et al., 2006); however, 

there are now well over a hundred with notable recent genes being identified for 

dormancy in rice, soybean (Glycine max) and tomato (Wang et al., 2018), the 

evolution of tubers in for example potato (Hardigan et al., 2017) and grain filling in 

maize (Sosso et al., 2015). Many of the genes involved are transcription factors 

(Fernie and Yan, 2019) as would perhaps be anticipated given the dramatic 

upregulation of gene expression on domestication evidenced in teosinte to maize 

comparisons (Swanson-Wagner et al., 2012). Beyond searching genomes for 

signatures of selection, detailed characterization of the transcriptome, metabolome 

and phenome will represent important information when choosing which species is 

most appropriate for de novo domestication. We discuss the first two of these here, 

but the third is so important that it warrants its own section below. Before we do so, 

however, it should be noted that the aim of all of these is a broad characterization of 

lesser studied species rather than merely an assessment of the variance of a trait of 

interest. Put another way, the domestication genes already described are the likely 

tools for de novo domestication but deciding the likely species to domesticate first 

requires a better understanding of the physiology of a range of species. One could, 
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for example, look for species that thrive in a particular environment, have a 

nutritionally excellent chemical composition, high nitrogen or water use efficiencies, 

or are naturally pest-resiliant. That said, we certainly appreciate that de novo 

domestication will be easier for similar species, such as the excellent examples in 

rice and the Solanaceae. A major question for the future is how easy it will be to 

transfer allelic diversity between members of different genera, tribes or even families 

where there are as yet no domesticated species. It is too early to answer this 

question. Many domestication traits are shared by a very wide number of species, 

whilst others are more taxonomically restricted (Meyer et al., 2012). This clearly 

renders de novo domestication of completely wild species that are taxonomically 

distant from our major crops exceptionally hard. By contrast, those traits which are 

widely shared represent obvious targets; however, that said, even if de novo 

domestication is restricted to crop wild relatives, it is likely to allow great agronomic 

advances. 

 

Transcript profiles are tissue-specific and subject to temporal control, thus 

transcriptomics can reveal important loci involved in domestication traits such as 

suppression of secondary metabolites, changes in form, size, taste, absence of 

defense mechanisms, seed dormancy and many other traits (Barrera-Redondo et al., 

2020). For example, the assessment of altered gene expression on domestication 

was achieved in maize, tomato, lettuce (Lactuca sativa) and common bean 

(Phaseolus vulgaris) by comparing the total gene expression of a range of wild 

species, progenitors  and cultivars, respectively (Swanson-Wagner et al., 2012; 

Koenig et al., 2013; Bellucci et al., 2014). A comparison of 38 diverse maize and 24 

teosinte provided evidence for more than 600 genes having significantly different 

expression levels and almost twice as many altered co-expression patterns 

(Swanson-Wagner et al., 2012). Included among the 600 were a mere 46 that had 

been previously identified as targets of selection and a similar number presumed to 

result as an effect of inbreeding.  

 

Similarly to the above-described maize study, research in tomato used RNA-seq to 

define both gene sequence and expression divergence between cultivated tomato 

and five related wild species (Koenig et al., 2013). Based on sequence differences, 

Koenig et al. detected footprints of positive selection in over 50 genes and 
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documented thousands of shifts at the gene-expression level. These rapidly evolving 

genes are commonly associated with environmental responses and stress tolerance. 

Similarly, decreased nucleotide and expression diversity and modified co-expression 

patterns characterized the domestication of common bean (Bellucci et al., 2014). 

Moreover, RNA sequencing of 240 accessions of lettuce revealed a list of regions as 

putative selective sweeps that occurred during domestication and divergence, 

respectively (Zhang et al., 2017). Genome-wide association studies (GWAS) further 

identified  5,311 expression quantitative trait loci (eQTL) regulating the expression of 

4,105 genes, including nine eQTLs regulating genes associated with flavonoid 

biosynthesis and thereby underlying color and nutritional content of the crop. Indeed, 

the GWAS approach is highly useful alongside the selective sweep approach in 

characterizing changes on domestication. Whilst there are variants as to the 

mathematical model underlying such analyses, they are all essentially highly similar 

in that they associate genotypic and phenotypic variance (lists of GWAS databases 

and commonly used approaches are provided in Tables I and II). 

 

A wide range of bitter-tasting compounds were selected against during the 

processes of domestication and improvement including the steroidal glycoalkaloids 

of tomato and potato (Solanum tuberosum) (Itkin et al., 2013; Schwahn et al., 2014), 

-L-oxayl-2,3-diaminopropionic acid ( -L-ODAP) in grass pea (Emmrich et al., 2019), 

curcurbitadienol in cucumber (Cucumis sativus) (Shang et al., 2014; Zhou et al., 

2016), glucosinolates in broccoli (Brassica oleracea) (Drewnowski and Gomez-

Carneros, 2000) and the flavone-7-O-neotesperidoside in citrus (Frydman et al., 

2013). Whilst the decrease in the levels of these metabolites is rather predictable 

and moreover easy to rationalize metabolome wide studies in wheat (Beleggia et al., 

2016), maize (Xu et al., 2019), rice (Deng et al., 2020) and tomato (Zhu et al., 2018) 

and latterly in lettuce (Zhang et al., 2020) and tea (Zhang et al., 2020) revealed far 

more complex changes.  

 

In the first of these studies, Beleggia et al. showed that the primary domestication of 

wheat was characterized by a reduction in unsaturated fatty acids on the primary 

domestication with altered amino acid content characterizing the secondary 

domestication (Beleggia et al., 2016). Maize, by contrast was characterized by 
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alkaloid, terpenoid and lipid changes at the divergence between teosinte and tropical 

maize, whereas benzoxazinoid levels changed at the divergence between tropical 

and temperate maize (Xu et al., 2019) and rice displayed different changes again 

(Deng et al., 2020). Tomato domestication had highly diverse effects on the 

metabolome, with many metabolic changes being associated with the increase in 

size, others with breeding for color preferences and yet further by the introgression 

of disease resistance from wild relatives (Zhu et al., 2018). Likewise in lettuce, 

quinate and chlorogenic acid levels were strongly reduced on domestication of 

lettuce, probably as a consequence of the desire to reduce bitterness (Zhang et al., 

2020). By contrast tea, probably as a result of its complex domestication, did not 

display clear changes in its metabolite content across the domestication and 

improvement processes (Zhang et al., 2020). 

 

Whilst transcriptomics and metabolomics and corresponding GWAS analysis can 

clearly allow the computational discrimination of domestication genes, the number 

and scale of changes at the transcript and metabolite level suggest that 

transcriptomics and metabolomics will be necessary for the regulatory control of any 

future de novo domesticated product. Such control has been debated for 

CRISPR/Cas lines (Fedorova and Herman, 2020; Fraser et al., 2020) in general but 

will be particularly important for de novo domestication events (either using 

CRISPR/Cas or conventional breeding) using species that are currently not eaten in 

great amounts in order to ensure their safety. For this purpose, a comparison of the 

metabolomes of de novo domestication events against conventional crops will prove 

highly worthwhile, although it will be important to improve the curation of such a 

comparison on our current knowledge concerning the (anti)nutritional values of the 

individual metabolites in our major crops such that this is as good as the FAO yield 

statistics (http://www.fao.org). 

 

THE USE OF PRECISION PHENOTYPING TO DEMONSTRATE THE 

PHENOTYPIC SCOPE OF DE NOVO DOMESTICATION 

As demonstrated above, a pipeline for identifying target genes for de novo 

domestication is relatively easy following analysis of our current crops and their wild 

relatives. Indeed, a number of key genes for improvement in orphan crops have 

previously been discussed, including genes involved in plant architecture (barley 
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SEMI-DWARF1, TEOSINTE BRANCHED1, DEEPER ROOTING1, PHOSPHORUS-

STARVATION TOLERANCE1, PROG1; Jia et al., 2009; Uga et al., 2013; Mai et al., 

2014; Shang et al., 2014; Studer et al., 2017), seasonal flowering time 

(PHOTOPERIOD-H1, CENTRORADIALIS; Turner et al., 2005; Comadran et al., 

2012), light competition (PHYB1 and PHYB2; Sheehan et al., 2007), seed or fruit 

retention (SHATTERING1 and others; Lin et al., 2012; Meyer and Purugganan, 

2013), fruit size (FRUIT WEIGHT2.2; Frary et al., 2000) and length of the juvenile 

stage (TERMINAL FLOWER 1, FLOWERING LOCUS T; Bergonzi and Albani, 2011; 

Yamagishi et al., 2014). Similarly, as the proof-of-concept studies described above 

demonstrate, targeted manipulation of multiple genes can be readily carried out. 

That said, selecting which relative is the best choice to target for the process is 

considerably more difficult. 

 

We believe that this question is best resolved by comparative phenotyping of a range 

of species of local wild species against the major cultivated crop as well as select 

genotyping of the level of allelic variance in the domestication gene in question. To 

the best of our knowledge, such experiments, while perhaps underway, have not yet 

been published. We did, in a previous article, suggest a range of non-cultivated and 

semi-cultivated relatives (Fernie and Yan, 2019) and this list still stands. However, it 

is important to note that not only are these species under-utilized but they are also 

understudied. Indeed the same could be held true until recently even for major crops 

such as cassava, sweet potato and yam as well as nutritionally important crops such 

as quinoa. The recent publication of the genomes of these species (Wang et al., 

2014; Yang et al., 2017; Jarvis et al., 2017; Scarcelli et al., 2019) alongside 

considerably better characterization of them at the physiological and metabolic levels 

(Obata et al., 2020; Price et al., 2020; Sonnewald et al., 2020) provides an effective 

blueprint as to how candidates for de novo domestication should be assessed. We 

summarize the set of tools that we believe should be brought to bear in field trials 

comparing the effects of established crops and candidates for de novo domestication 

in Figure 2. Here we suggest that it will be important to use contemporary technology 

to consider all levels of the spatial hierarchy from single cells (Luo et al., 2020) to 

ecosystem models (Tian et al., 2020), using a broad range of imaging tools to record 

and also infer trait variances (Yang et al., 2020) In this vein the power of inferential 

data has been provided by a recent proof of concept study comparing hyperspectral 
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imaging of metabolite content to measurements made by mass-spectrometry 

(Vergara-Diaz et al., 2020) implying that this may shortly be as reliable as spectral 

measurements of photosynthesis from unmanned aerial vehicles have proven to be 

(Gago et al., 2020; Yang et al., 2020). Indeed the data emanating from such imaging 

platforms (and those presented in Figure 3), will certainly form an essential 

component of deciding which species would be ideal for any given environment for 

the purposes of de novo domestication. As an extension to this strategy the use of 

the reciprocal transplant strategy (Sork, 2018; Agren and Schemske, 2012; Hereford, 

2009), whereby species are planted and monitored in the environment of one 

another in addition to their own, would allow the adaptation of exotic species to be 

quantified in a human-controlled environment as a first indicator that aids in the 

selection of the best candidates for de novo domestication. 

 

As we state above, to our knowledge, public data is not currently available for 

comparison of domesticated and non-domesticated species. However, all of these 

phenotyping methods have been demonstrated to provide reliable information (Watt 

et al., 2020; Yang et al., 2020). As such we would envisage the use of such precision 

phenotyping approaches, in comparative analyses, to be instrumental in narrowing 

down the lists mentioned above and beginning to define ideal targets for de novo 

domestication. This is very easy to state but how do we propose that this will work in 

practice. Well for starters examination of certain key parameters could be used for 

example the rate of photosynthesis, ease of harvest, productivity, abiotic resilience, 

biotic resistance, ability to prosper in a dense stand etc. Such traits could be 

computationally afforded different weighting with regard to the most challenging 

aspects of the environment the novel crop was planned for thereby providing a 

ranking of candidate species for a given environment. At a practical level the 

complexity of obtaining the genome sequence and/ or of generating allelic variants in 

the gene(s) of interest (via either gene editing or introgression), would likely 

considerably narrow these lists. However, despite current limitations, genome 

sequencing solutions for complex genomes are becoming available and as we detail 

below considerable advances are also being made in transformation of species that 

were previously regarded as recalcitrant. 

 

THE POWER OF CRISPR/CAS LIBRARIES 
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Following the selection of the candidate species for de novo domestication two 

further hurdles remain. First, it would be prudent to have the genome of the species 

to be domesticated in hand such that one could be sure that the genetic 

interventions planned were sensible. Next generation sequencing technologies have 

rendered this relatively facile and even large polyploidy genomes can be tackled 

without trepidation. Second, on having identified the genetic targets to modify a route 

for genetic manipulation is needed. For this purpose, two clear possibilities exist. 

Using classical breeding, genes of interest can be introgressed into the candidate for 

de novo domestication providing that the source of these genes is closely genetically 

related to the recipient. Alternatively, chemical mutagenesis or the genome editing 

approach can be used. The use of the latter approach is complicated by the fact that 

regulatory concerns will render agricultural production of plants created by such 

technologies difficult in certain countries. However, given that it is more rapid, and 

more precise we will concentrate on this approach here. While Zinc Finger 

Nucleases and Transcription Activator like effector nucleases are also utilized, 

Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 

protein (CRISPR-Cas), has moved to the fore primarily due to its simplicity and 

efficiency. A great advantage of the CRISPR/Cas system is that it can be used to 

edit multiple genes simultaneously (Ma et al., 2015; Xie and Yang, 2013; Zhang et 

al., 2014; Qi et al., 2016), and can generate large mutant libraries in a scalable high 

throughput manner (Lu et al., 2017; Meng et al., 2017; Liu et al., 2020).  

 

CRISPR-Cas systems have already shown their superiority in precision breeding 

through editing coding regions and knocking out large numbers of genes of interest 

(reviewed in Chen et al., 2019; Liu et al., 2021). However, fine-tuning of the 

expression of target genes via editing cis-regulatory sequences or changing the 

status of epigenetic marks are also very promising for future breeding designs (Liu et 

al., 2021). It is particularly worth mentioning that the further application of big data 

analysis methods utilizing machine learning approaches may enable us to accurately 

understand and predict the function of each gene, segment of sequence or even 

each base. Combined with CRISPR technology, not only we can accurately modify 

target sequences, but also can create new sequences, thereby altering their 

function(s). This will render future de novo domestication both more efficient and 

more accurate (Liu et al., 2020). In this vein, Rodriguez-Leal et al. (2017) provided a 
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seminal example of obtaining quantitative variation in the important agronomic traits 

fruit size, inflorescence branching, and plant architecture via gene editing. Whilst this 

was carried out in a domesticated species as a proof-of-concept, it is clearly 

conceivable that introducing such common domestication traits to underutilized 

species may well improve their prospects as agricultural commodities. 

 

As mentioned above, a major constraint in our ability to harness the potential of other 

species is the difficulty in producing the allelic variance. Whilst in many cases this 

goal could be achieved by mutagenesis or gene introgression via classical breeding, 

such approaches are relatively slow. Therefore, expanding the number of species 

that can be transformed is of vast importance. Recent studies have reported 

considerable improvements in the efficiency of plant regeneration from tissue culture 

are achievable by overexpression of plant developmental regulators including 

LEAFY COTYLEDON1 or LEAFY COTYLEDON2 (Lotan et al., 1998; Stone et al., 

2001), WUSCHEL (Zuo et al., 2002) or BABY BOOM (Boutilier et al., 2002). 

Moreover, a recent study has shown that a fusion protein combining wheat 

GROWTH-REGULATING FACTOR4 and its cofactor GRF-INTERACTING 

FACTOR1 substantially increases the efficiency and speed of regeneration in wheat, 

triticale and rice and increases the number of transformable wheat genotypes 

(Debernardi et al., 2020). These examples, alongside that of the transformation of 

the wild rice O. alta would appear to offer great promise for this approach. However, 

the ability to introduce the planned modification into the genome of the potential 

novel crop—be it by classical, mutagenesis or gene editing approaches—should not 

be underestimated as it is currently the major challenge facing the de novo 

domestication approach. A couple of recent developments, in addition to those 

mentioned above offer hope here though. The first is the development of efficient 

grafting methods that would allow wild species to act as root-stocks as a route to 

novel agricultural products. This approach has often been discarded due to graft 

incompatibilities, but this challenge has been overcome in many crops (Notaguchi, 

2020). The second is the recent finding by the group of Dan Voytas that gene-edited 

dicots can be generated via de novo meristem induction (Maher et al., 2019). In this 

method, developmental regulators and gene editing reagents can be delivered to 

somatic cells in order to generate inheritable changes in sequence via a route that 

bypasses tissue culture. The development of such approaches thus provides 
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optimism that in the future the challenge of modifying lesser grown plants could 

prove less daunting. 

 

Despite the immense interest in these approaches, there are some concerns about 

the application of the CRISPR-Cas system in crop breeding, the biggest of these 

being the possibility of deleterious effects caused by the integration of transgenic 

constructs or off-target mutations. Several studies have documented the off- target 

effects of the CRISPR-Cas system in plants (Xie and Yang, 2013; Zhang et al., 

2014; Endo et al., 2015; Jacobs et al., 2015; Jin et al., 2019). Computational analysis 

of the likelihood of off-target effects is a pre-requisite for precise de novo 

domestication approaches. In parallel, other methods of assessing genome edited 

crops such as at the level of the metabolome have been proposed as methods of 

ensuring that unintended effects of the editing can be monitored and, if these are 

negligible, that such crops can be regarded as safe (Fraser et al., 2020). Such 

analyses are important for all new crops; however, they will be far more important for 

true do novo domesticates as opposed to minor crops that are already consumed 

such as members of the amaranth genus (Stetter et al., 2020), or fonio millet 

(Digitaria exilis) (Abrouk et al., 2020). It can only be hoped that a combination of 

such approaches, alongside the publicity generated by the 2020 Nobel Prize for 

Chemistry will allay public skepticism of gene editing.  

 

One aspect that is difficult to envisage being tractable by gene editing is the 

harnessing of trait variation resulting from natural structural genome variants (Alonge 

et al., 2020; Alseekh et al., 2020; Dominguez et al., 2020; Fraser et al., 2020). It is 

becoming apparent from resequencing and the assembly of pan-genomes that 

structural variants beyond the mere addition or deletion of genes play important roles 

in shaping crop phenotypes. The results of two recent studies in tomato are 

particularly pertinent here that of Dominguez et al. revealed the importance of 

transpostional insertion on transcription with potential consequences on virus and 

Phytopthora resistance as well as shelf life whilst GWAS studies revealed structural 

variants associated to a number of these (Dominguez et al., 2020). Similarly, the 

study of Alonge et  al. (2020) identified a P450 gene duplication underlying a fruit 

weight quantitative trait loci (which was previously thought to be associated with a 

single SNP) and other structural variants, which were required for breeding of the 
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jointless trait (Alonge et al., 2020). Adoption of introgression based strategies would 

be one current approach to harness such variation. However, whether such 

approaches will be necessary awaits further, more detailed analysis of structural 

genome variants in the majority of our crop species. That said, it is important to note 

here that the CRISPR/Cas9 has already been demonstrated to display the diversity 

required to address these questions in plants (Li and Xia, 2020). In particular, it has 

been shown to induce chromosomal translocations (Beying et al., 2020), large 

inversions (Schwartz et al., 2020) and to change recombination patterns (Schmidt et 

al., 2020). 

 

THE PROSPECTS OF INTEGRATING MOLECULAR MARKERS AND 

METABOLITES INTO MODELS TO IMPROVE PHENOTYPE PREDICTION 

Several other computational tools warrant discussion within the context of de novo 

domestication, including prediction of changes in the levels of molecular and 

morphological aspects of phenotype. A relatively simple example that is pertinent in 

this context is the recent attempt to model gene expression of the phenylpropanoid 

pathway a wide range of wild species tomato on the basis of metabolome data from 

the same samples (Tohge et al., 2020) with this being the culmination of several 

years of experience in integrative analyses reviewed in a previous Update in Plant 

Physiology (Tohge et al., 2015). Something that has proven considerably more 

complex is the prediction of yield from metabolomics data. This has nevertheless 

been attempted (Meyer et al., 2012; Riedelsheimer et al., 2012; Rosado-Souza et 

al., 2015). Whilst generally speaking it is difficult to find a single metabolite whose 

level is predictive of yield, a wide number of studies have revealed metabolic 

signatures for this in a range of species including Arabidopsis, maize, wheat and 

tomato (Schauer et al., 2006; Meyer et al., 2012; Riedelsheimer et al., 2012; Obata 

et al., 2015; Vergara-Diaz et al., 2020). Application of such tools to de novo 

domesticated crops will be a highly useful strategy to search for additional 

manipulations that will allow further improvement of these novel crops.  

 

In addition, genomic selection approaches that utilize molecular markers and 

machine learning to identify superior genotypes with improved traits such as growth 

have started to incorporate –omics level data. Given that this topic has recently been 

comprehensively reviewed, we do not discuss it in detail here (Tong and Nikoloski, 
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2020). Suffice to say that results from a recent study suggest that integrating 

molecular markers into metabolic models can dramatically improve the prediction 

accuracy of genomic selection strategies (Tong et al., 2020). We thus feel it likely 

that the integration of such extended models, as well as the integration of other 

machine learning strategies such as those described in Liu et al. (Liu et al., 2020) will 

most likely prove highly informative in the development of second generation de 

novo domesticates. 

 

 

CONCLUSION AND FUTURE PERSPECTIVES 

As we have described above, a growing number of examples have demonstrated 

that it has become relatively facile to de novo domesticate plants. Indeed, 

technological advances in nucleotide sequencing and gene editing have greatly 

expanded our capability to tackle such ambitious projects. We argue here that given 

these stunning advances, one of the most difficult aspects of this procedure will be 

the choice of a suitable starting species presenting a potential route by which to 

address this question. Multiple roles for computation can be envisaged in the 

process of de novo domestication from comparative phenotypic evaluation of 

potential starting species, through genome analysis and population genomics to the 

comparative evaluation of de novo domesticates and their progenitors. The need for 

computation in the design of CRISPR/Cas strategies, the evaluation of genome wide 

association studies, multi-omics integration, genomic prediction and deep learning is 

equally pervasive. Indeed, with the increasing sophistication of available genotyping 

and phenotyping data it is becoming harder and harder to imagine any large-scale 

de novo domestication program not employing the tools of precision phenotyping. 

Despite its great promise, a number of important and even fundamental questions 

remain as yet unanswered (see OUTSTANDING QUESTIONS BOX). Moreover, 

considerable challenges that limited and constrained crop domestication over 

millennium (Stetter, 2021) will ultimately also need to be considered when 

approaching de novo domestication. Amongst these the genetic architecture 

underlying traits, the level of standing genetic variation for domestication traits and 

the accumulation of genetic load (i.e., deleterious genetic variants), have been noted 

as important factors determining the extent of domestication of various species. Less 

domesticated crops are often well adapted to diverse environments and of high 
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nutritional value but need improvement in key domestication traits to render them 

serious alternatives to our existing crops. We believe that the key steps in de novo 

domestication are threefold (i) the comprehensive evaluation of a wide range of 

lesser grown crops alongside the acquisition of (ii) high quality genome sequences, 

(iii) knowledge concerning functional genes and (iv) the competence to generate 

variance in key genes of interest. Whilst the examples to date suggest that such 

approaches are possible, a lot of research and development will be required before 

they become routine.  

 

 

ADVANCES BOX  

 Recent years have seen an explosion in the number of domestication alleles 

that have been demonstrated to underlie important agronomic traits. 

 

 Gene editing techniques allow the manipulation of (multiple) such alleles into 

as yet undomesticated species as a method to produce crops better suited to 

a given environmental niche. 

 

 Precision phenotyping approaches are beginning to be used in the design and 

execution of such projects and will undoubtedly become a key aspect of such 

endeavors. 

 

OUTSTANDING QUESTIONS BOX  

 Where is our greatest need for de novo domestication?  

 What are the most suitable species to act as progenitors to the de novo 

domesticates?  

 Can we improve minor crops with the tools of de novo domestication? 

 

 Can we tailor the generation of de novo domesticates to perform better in 

projected future climates? 

 

 Will it be possible to utilize deep-learning methods to improve future 

strategies? 
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TABLES 
Table I 
List of database and tools commonly used for genome wide association studies 
(GWAS) and genomic studies. 
Name Link Refernce 

easyGWAS: A Cloud-Based Platform for Comparing the 
Results of Genome-Wide Association Studies 

https://easygwas.ethz.ch/ (Grimm et al., 2017) 

Matapax: An Online High-Throughput Genome-Wide 
Association Study Pipeline 

https://matapax.mpimp-golm.mpg.de/ 
 

(Childs et al., 2012) 

GWAPP: A Web Application for Genome-Wide Association 
Mapping in Arabidopsis 

https://gwas.gmi.oeaw.ac.at/ (Seren et al., 2012) 

GWAS Atlas: a curated resource of genome-wide variant-
trait associations in plants and animals 

https://bigd.big.ac.cn/gwas/ 
 

(Ye et al., 2020) 

PGSB PlantsDB: updates to the database framework for 
comparative plant genome research 

https://pgsb.helmholtz-
muenchen.de/plant/index.jsp  

(Spannagl et al., 2016) 

Phenotypic and genome-wide association with the local 
environment of Arabidopsis 

http://www.personal.psu.edu/sma3/CL
IMtools.html 
 

(Ferrero-Serrano and 
Assmann, 2019) 

RiceVarMap: a comprehensive database of rice genomic 
variations 

http://ricevarmap.ncpgr.cn/v2/ 
 

(Zhao et al., 2014) 

GWASpro: a high-performance genome-wide association 
analysis server 

https://bioinfo.noble.org/GWASPRO/ (Kim et al., 2018) 

MaizeGDB 2018: the maize multi-genome genetics and 
genomics database 

https://www.maizegdb.org/ (Kim et al., 2018) 

TASUKE+: a web-based platform for exploring GWAS 
results and large-scale resequencing data 

(https://tasuke.dna.affrc.go.jp/ 
 

(Kumagai et al., 2019) 

ZEAMAP, a Comprehensive Database Adapted to the 
Maize Multi-Omics Era 

http://www.zeamap.com 
 

(Gui et al., 2020) 

MaizeCUBIC: a comprehensive variation database for a 
maize synthetic population 

http://modem.hzau.edu.cn/ 
 

(Luo et al., 2020) 

CARMO: a comprehensive annotation platform for 
functional exploration of rice multi-omics data 

http://bioinfo.sibs.ac.cn/carmo 
 

(Wang et al., 2015) 

AraQTL – workbench and archive for systems genetics in 
Arabidopsis thaliana 

http://www.bioinformatics.nl/AraQTL/ (Nijveen et al., 2017) 

WheatExp: an RNA-seq expression database for polyploid 
wheat 

http://wheat.pw.usda.gov/WheatExp/ (Pearce et al., 2015) 

CerealsDB 2.0: an integrated resource for plant breeders 
and scientists 

https://www.cerealsdb.uk.net/cerealge
nomics/CerealsDB/indexNEW.php 

(Wilkinson et al., 2012) 

The Triticeae Toolbox: Combining Phenotype and 
Genotype Data to Advance Small-Grains Breeding 

http://triticeaetoolbox.org (Blake et al., 2016) 

The AraGWAS Catalog: a curated and standardized 
Arabidopsis thaliana GWAS catalog 

https://aragwas.1001genomes.org 
 

(Togninalli et al., 2018) 
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Gramene: A Resource for Comparative Analysis of Plants 
Genomes and Pathways 

http://www.gramene.org 
 

(Tello-Ruiz et al., 2018) 

Ensembl Genomes 2020—enabling non-vertebrate 
genomic research 

http://www.ensemblgenomes.org) 
 

(Howe et al., 2020) 

SnpHub: an easy-to-set-up web server framework for 
exploring large-scale genomic variation data in the post-
genomic era with applications in wheat 

http://wheat.cau.edu.cn/Wheat_SnpH
ub_Portal/. 
 

(Guo et al., 2020) 
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Table II: Commonly Used Packages for Conducting GWAS* 
*Modified from (Burghardt et al., 2017)  

*Modified from (Burghardt et al., 2017)  

 
 
 

Table II:  Commonly Used Packages for Conducting GWAS* 

Package      Description  Web Page 

TASSEL Variety of algorithms MLM, GLM, weighted MLM, genomic selection, fast 

association; supports P3D compression; can process GBS data; designed to 

determine dominance/additivity of effects; user‐friendly GUI 

http://www.maizegenetics.net/tassel  

GAPIT Package that can perform MLM and EMMA; supports P3D and EMMAx; works 

via R language 

http://www.maizegenetics.net/gapit  
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FIGURE LEGENDS 
Figure 1. Overview of knowledge-driven de novo domestication. (A) The wild 
relatives and modern cultivars are vital germplasms (e.g. teosinte and maize) for 
tracing selection signals during plant domestication and also functional genomics 
research. (B) Multiple-omics, including genomics, transcriptomics, metabolomics and 
phenomics, are foundations for high throughput gene cloning and gene function 
analysis. (C-D) Wild species chosen for de novo domestication could be quickly 
shaped to meet different kinds of demands through selections on detected signals 
during previous domestications, especially parallel selected genes. Ideal plants can 
thus be designed through the pyramiding and modification of genes of diverse 
function. 
 
Figure 2. Utilizing multiple crop phenotyping tools for accurate high-
throughput acquisition and analysis of multidimensional phenotypes on 
organism-wide scale (from single cell to ecotype). Examples range from micro to 
macro scale, through different environments (abiotic stress, biotic stress, etc.) and 
across the entire crop developmental process. 
  

A-DTest R package is ADGWAS: for GWAS https://github.com/maizego/A-D-test 

EMMAX Efficient mixed‐model method for large genomic datasets; command‐line interface 

only 

http://genetics.cs.ucla.edu/emmax/index.html  

GEMMA Standard/multivariate/Bayesian linear mixed‐model framework; estimates 

quantitative genetic traits and proportioning of variance; command‐line interface 

only 

http://www.xzlab.org/software.html  

ANGSD Useful when genotypic states are not known with certainty; measures population 

genetic parameters; command‐line interface only 

http://www.popgen.dk/angsd/index.php/ANGSD  

Plink Wide‐ranging toolset for conducting GWAS; originally designed for human 

genome data; command‐line interface only 

http://pngu.mgh.harvard.edu/˜purcell/plink/  

Lrgpr Allows for testing of G×G and G×E; works via R language http://lrgpr.r‐forge.r‐project.org/  

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab160/6225023 by N

ational Science & Technology Library R
oot Adm

in user on 04 M
ay 2021

http://genetics.cs.ucla.edu/emmax/index.html
http://www.xzlab.org/software.html
http://www.popgen.dk/angsd/index.php/ANGSD
http://pngu.mgh.harvard.edu/~purcell/plink/
http://lrgpr.r-forge.r-project.org/


 

 25 

Figure 3. The utilization of crop phenotyping techniques. They can be applied 
widely for example in dynamic measurements of 3D plant growth, ear growth, 
photosynthesis, root system architecture, rhizospheric microorganism detection, non-
destructive organ imaging and the visualization of seed quality distribution. 
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ADVANCES 

• Recent years have seen an explosion in the 
number of domestication alleles that have 
been demonstrated to underlie important 
agronomic traits. 

• Gene editing techniques allow the 
manipulation of (multiple) such alleles into 
as yet undomesticated species as a 
method to produce crops better suited to 
a given environmental niche. 

• Precision phenotyping approaches are 
beginning to be used in the design and 
execution of such projects and will 
undoubtedly become a key aspect of such 
endeavors. 
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OUTSTANDING QUESTIONS 

• Where is our greatest need for de novo 
domestication?  

• What are the most suitable species to act 
as progenitors to the de novo 
domesticates?  

• Can we improve minor crops with the 
tools of de novo domestication? 

• Can we tailor the generation of de novo 
domesticates to perform better in 
projected future climates? 

• Will it be possible to utilize deep-learning 
methods to improve future strategies? 
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